Overview of Glioblastoma: Current Drugs and Novel Therapy Trends
Keywords:
Glioblastoma, Therapy, Chemotherapy, TemozolomideAbstract
Glioblastoma multiforme (GBM) is the most common type of malignant primary brain tumor. GBM, a very aggressive tumor, has a low survival rate and currently has no curative treatment. ATRX, TERT, TP53 mutations, loss of PTEN function, and EGFR and WT1 have been found to play a role in the genetic pathogenesis of GBM. It has been determined that ionizing radiation, obesity, some metals and chemicals, pesticides, TNF-α, IL-1 and IL-6 are risk factors of GBM. In GBM treatment, surgery, radiotherapy and chemotherapy are usually combined. Temozolomide, carmustine, irinotecan and bevacizumab are the most important anticancer agents used in chemotherapy for GBM therapy. Targeted molecular (precision) therapies, targeting DNA damage response pathways, targeting tumor metabolism, immunotherapies, and viral therapies are novel treatment options being studied for the treatment of GBM. In this paper, the characteristics of glioblastoma multiforme (GBM), its incidence, genetic pathogenesis, risk factors, treatment options and drugs used in chemotherapy, difficulties encountered in treatment, novel therapies for GBM and challenges and future directions are discussed.
References
McKinney PA. Brain tumours: incidence, survival, and aetiology. Journal of Neurology, Neurosurgery, and Psychiatry 2(Suppl 2).
Foundation NB. The essential guide to brain tumors (2007).
Institute, National Cancer. Brain tumors (2002). Available from: http://www.cancer.gov/cancertopics/wyntk/brain,
Smeltzer SC, Bare GB. Brunner & Suddarth’s textbook of medical-surgical nursing. USA: Lippincott Williams & Wilkins (2005). 1970–1977.
Armstrong TS, Gilbert MR. Metastatic brain tumors: diagnosis, treatment, and nursing interventions. Clinical Journal of Oncology Nursing (2000) 4(5):217–225.
Fitzsimmons B, Bohan E. Common neurosurgical and neurological disorders Morton PG, Fontaine D, Hudak CM, Gallo BM, editors. USA (2004). 796–838.
Hill CI, Nixon CS, Ruehmeier JL, Wolf LM. Brain tumors. Physical Therapy (2002) 82(5):496–502.
Smith GB, Schnell S. Nursing care of patients with central nervous system disorders. In: Williams LS, Hopper PD, editors. Understanding Medical Surgical Nursing. USA: Philadelphia: FA. Davis Company (2003). p. 849–851.
Boss BJ, Wilkerson RR. Concepts of neurologic dysfunction. In: Huether SE, editor. Understanding Pathophysiology, McKance KL. USA:Philadelphia: Mosby, Inc (2006). p. 491–546.
Doolittle ND. State of the science in brain tumor classsification. Seminars in Oncology Nursing (2004) 20(4):224–230.
Soffietti R, Rudā R, Mutani R. Management of brain metastases. Journal of Neurology (2002) 249(10):1357–1369.
Catt S, Chalmers A, Fallowfield L. Psychosocial and supportive-care needs in high-grade glioma. The Lancet. Oncology (2008) 9(9):884–891.
Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011-2015. Neuro-oncology (2018) 20(supp_4).
Tamimi AF, Juweid M. Epidemiology and outcome of glioblastoma. Australia:Brisbane: Codon Publications (2017). 143–153.
Ohgaki H, Kleihues P. The definition of primary and secondary glioblastoma 19 (2013). 764–772.
Louis DN, Perry A, Reifenberger G, Deimling A, Figarella-Branger D, Cavenee WK. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathologica (2016) 131(6):803–820.
Ostrom QT, N P, G C, K W, C K, JS B-S. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-oncology (2020) 22(12 Suppl 2).
Li K, Lu D, Guo Y, Wang C, Liu X, Liu Y. Trends and patterns of incidence of diffuse glioma in adults in the United States: 1973-2014. Cancer Medicine (2018) 7(10):5281–5290.
Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro-oncology (2017) 19(suppl_5).
Schwartzentruber J, Korshunov A, Liu X-Y, Jones D, Pfaff E, Jacob K. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature (2012) 482(7384):226–231.
Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, LA, Jr, Diaz. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proceedings of the National Academy of Sciences of the United States of America (2013) 110(15):6021–6026.
Vinagre J, Pinto V, Celestino R, Reis M, Pópulo H, Boaventura P. Telomerase promoter mutations in cancer: an emerging molecular biomarker? Virchows Archiv 465 (2014). 119–133.
Wang TJ, Huang MS, Hong CY, Tse V, Silverberg GD, Hsiao M. Comparisons of tumor suppressor p53, p21, and p16 gene therapy effects on glioblastoma tumorigenicity in situ. Biochemical and Biophysical Research Communications (2001) 287(1):173–180.
Oren M, Rotter V. Mutant p53 gain-of-function in cancer. Cold Spring Harbor Perspectives in Biology (2010) 2(2).
Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B. A mutant-p53/smad complex opposes p63 to empower TGFbeta-induced metastasis 137 (2009). 87–98.
Schulz-Heddergott R, Moll UM. Gain-of-function (GOF) mutant p53 as actionable therapeutic target. Cancers (2018) 10(6).
Wang S-P, Wang W-L, Chang Y-L, Wu C-T, Chao Y-C, Kao S-H. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug. Nature Cell Biology (2009) 11(6):694–704.
Bautista F, Paci A, Minard-Colin V, Dufour C, Grill J, Lacroix L. Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas 61 (2014). 1101–1103.
Behling F, Barrantes-Freer A, Skardelly M, Nieser M, Christians A, Stockhammer F. Frequency of BRAF V600E mutations in 969 central nervous system neoplasms. Diagnostic Pathology (2016) 11(1).
Agnihotri S, Wolf A, Picard D, Hawkins C, Guha A. GATA4 is a regulator of astrocyte cell proliferation and apoptosis in the human and murine central nervous system. Oncogene (2009) 28(34):3033–3046.
Agnihotri S, Wolf A, Munoz DM, Smith CJ, Gajadhar A, Restrepo A. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. The Journal of Experimental Medicine (2011) 208(4):689–702.
Patel R, Leung HY. Targeting the EGFR-family for therapy: biological challenges and clinical perspective. Current Pharmaceutical Design (2012) 18(19):2672–2679.
Ekstrand AJ, Sugawa N, James CD, Collins VP. Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proceedings of the National Academy of Sciences of the United States of America (1992) 89(10):4309–4313.
Kanzawa T, Bedwell J, Kondo Y, Kondo S, Germano IM. Inhibition of DNA repair for sensitizing resistant glioma cells to temozolomide. Journal of Neurosurgery (2003) 66(6):1047–1052.
Miyoshi Y, Ando A, Egawa C, Taguchi T, Tamaki Y, Tamaki H. High expression of Wilms’ tumor suppressor gene predicts poor prognosis in breast cancer patients 8 (2002). 1167–1171.
Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia 84. Blood (1994). 3071–3079.
Clark AJ, Ware JL, Chen MY, Graf MR, Meter TE, Dos Santos WG. Effect of WT1 gene silencing on the tumorigenicity of human glioblastoma multiforme cells. Journal of Neurosurgery (2010) 112(1):18–25.
Nakahara Y, Okamoto H, Mineta T, Tabuchi K. Expression of the Wilms’ tumor gene product WT1 in glioblastomas and medulloblastomas. Brain Tumor Pathology (2004) 21(3):113–116.
Koul D. PTEN signaling pathways in glioblastoma. Cancer Biology & Therapy (2008) 7(9):1321–1325.
Knobbe CB, Merlo A, Reifenberger G. Pten signalling in gliomas. Neuro-oncology (2002) 4(3):196–211.
Newcomb EW, Cohen H, Lee, SR, Bhalla, SK B, J H, R.L. Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathology (1998) 8(4):655–667.
Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro-oncology (2013) 2(Suppl 2).
Grochans S, Cybulska AM, Simińska D, Korbecki J, Kojder K, Chlubek D. Epidemiology of glioblastoma multiforme–literature review. Cancers (2022) 14(10).
Jialal I, Devaraj S. Subcutaneous adipose tissue biology in metabolic syndrome. Hormone Molecular Biology and Clinical Investigation (2018) 33(1).
Nelson LR, Bulun SE. Estrogen production and action. Journal of the American Academy of Dermatology (2001) 45(3 Suppl).
Little RB, Madden MH, Thompson RC, Olson JJ, Larocca RV, Pan E. Anthropometric factors in relation to risk of glioma 24 (2013). 1025–1031.
Parent M-E, Turner MC, Lavoué J, Richard H, Figuerola J, Kincl L. Lifetime occupational exposure to metals and welding fumes, and risk of glioma: a 7-country population-based case-control study 16 (2017).
Merritt RL, Foran CM. Influence of persistent contaminants and steroid hormones on glioblastoma cell growth. Journal of Toxicology and Environmental Health. Part (2007) 70(1):19–27.
Doğanlar O, Doğanlar ZB, Kurtdere AK, Chasan T, Ok ES. Chronic exposure of human glioblastoma tumors to low concentrations of a pesticide mixture induced multidrug resistance against chemotherapy agents. Ecotoxicology and Environmental Safety (2020).
Kuan AS, Green J, Kitahara CM, González AB, Key T, Reeves GK. Diet and risk of glioma: combined analysis of 3 large prospective studies in the UK and USA. Neuro-oncology (2019) 21(7):944–952.
Galeone C, Malerba S, Rota M, Bagnardi V, Negri E, Scotti L. A meta-analysis of alcohol consumption and the risk of brain tumours. Annals of Oncology (2013) 24(2):514–523.
Baglietto L, Giles GG, English DR, Karahalios A, Hopper JL, Severi G. Alcohol consumption and risk of glioblastoma; evidence from the Melbourne Collaborative Cohort Study. International Journal of Cancer (2011) 128(8):1929–1934.
Maekawa A, Mitsumori K. Spontaneous occurrence and chemical induction of neurogenic tumors in rats‐influence of host factors and specificity of chemical structure. Critical Reviews in Toxicology (1990) 20(4):287–310.
Hurley SF, McNeil JJ, Donnan GA, Forbes A, Salzberg M, Giles GG. Tobacco smoking and alcohol consumption as risk factors for glioma: a case-control study in Melbourne, Australia. Journal of Epidemiology and Community Health (1996) 50(4):442–446.
Qi Z-Y, Shao C, Yang C, Wang Z, Hui G-Z. Alcohol consumption and risk of glioma: a meta-analysis of 19 observational studies. Nutrients (2014) 6(2):504–516.
Cote DJ, Samanic CM, Smith TR, Wang M, Smith-Warner SA, Stampfer MJ. Alcohol intake and risk of glioma: results from three prospective cohort studies. European Journal of Epidemiology (2021) 36(9):965–974.
Samanic CM, Cote DJ, Creed JH, Stampfer MJ, Wang M, Smith-Warner SA. Prospective study of sleep duration and glioma risk 32 (2021). 1039–1042.
Orešković D, Kaštelančić A, Raguž M, Dlaka D, Predrijevac N, Matec D. The vicious interplay between disrupted sleep and malignant brain tumors: a narrative review. Croatian Medical Journal (2021) 62(4):376–386.
Cutando A, López-Valverde A, Arias-Santiago S, Vicente J, Diego RG. Role of melatonin in cancer treatment: Anticancer Research (2012). 2747–2753.
Lissoni P, Meregalli S, Nosetto L, Barni S, Tancini G, Fossati V. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology (1996) 53(1):43–46.
Martín V, García-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sanchez-Sanchez A, Antolín I. Melatonin sensitizes human malignant glioma cells against TRAIL-induced cell death 287 (2010). 216–223.
Zheng X, Pang B, Gu G, Gao T, Zhang R, Pang Q. Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. International Journal of Biological Sciences (2017) 13(2):245–253.
Medzhitov R. Origin and physiological roles of inflammation. Nature (2008) 454(7203):428–435.
Meira LB, Bugni JM, Green SL, Lee C-W, Pang B, Borenshtein D. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. The Journal of Clinical Investigation (2008) 118(7):2516–2525.
Murata M. Inflammation and cancer. Environmental Health and Preventive Medicine 23 (2018).
Liu C-H, Chen Z, Chen K, Liao F-T, Chung C-E, Liu X. Lipopolysaccharide-mediated chronic inflammation promotes tobacco carcinogen-induced lung cancer and determines the efficacy of immunotherapy 81 (2021). 144–157.
D’Mello C, Le T, Swain MG. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. The Journal of Neuroscience (2009) 29(7):2089–2102.
Kore RA, Abraham EC. Inflammatory cytokines, interleukin-1 beta and tumor necrosis factor-alpha, upregulated in glioblastoma multiforme, raise the levels of CRYAB in exosomes secreted by U373 glioma cells. Biochemical and Biophysical Research Communications (2014) 453(3):326–331.
Hoesel B, Schmid JA. The complexity of NF-κB signaling in inflammation and cancer 12 (2013).
Kim S, Domon-Dell C, Kang J, Chung DH, Freund J-N, Evers BM. Down-regulation of the tumor suppressor PTEN by the tumor necrosis factor-alpha/nuclear factor-kappaB (NF-kappaB)-inducing kinase/NF-kappaB pathway is linked to a default IkappaB-alpha autoregulatory loop. The Journal of Biological Chemistry (2004) 279(6):4285–4291.
Lu T, Tian L, Han Y, Vogelbaum M, Stark GR. Dose-dependent cross-talk between the transforming growth factor-beta and interleukin-1 signaling pathways. Proceedings of the National Academy of Sciences of the United States of America (2007) 104(11):4365–4370.
Yeung YT, McDonald KL, Grewal T, Munoz L. Interleukins in glioblastoma pathophysiology: implications for therapy. British Journal of Pharmacology (2013) 168(3):591–606.
Sasaki A, Tamura M, Hasegawa M, Ishiuchi S, Hirato J, Nakazato Y. Expression of interleukin-1beta mRNA and protein in human gliomas assessed by RT-PCR and immunohistochemistry. Journal of Neuropathology and Experimental Neurology (1998) 57(7):653–663.
Griffin BD, Moynagh PN. Persistent interleukin-1beta signaling causes long term activation of NFkappaB in a promoter-specific manner in human glial cells. The Journal of Biological Chemistry (2006) 281(15):10316–10326.
Paugh BS, Bryan L, Paugh SW, Wilczynska KM, Alvarez SM, Singh SK. Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. The Journal of Biological Chemistry (2009) 284(6):3408–3417.
Shan Y, He X, Song W, Han D, Niu J, Wang J. Role of IL-6 in the invasiveness and prognosis of glioma. International Journal of Clinical and Experimental Medicine (2015) 8(6):9114–9120.
Tchirkov A, Khalil T, Chautard E, Mokhtari K, Véronèse L, Irthum B. Interleukin-6 gene amplification and shortened survival in glioblastoma patients. British Journal of Cancer (2007) 96(3):474–476.
Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene (2007) 26(22):3279–3290.
Crespo S, Kind M, Arcaro A. The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis. Journal of Cancer Metastasis Treatment (2016) 2:80–89.
Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A. The role of JAK-STAT signaling within the CNS. JAK-STAT (2013) 2(1).
Drugbank. DB00853. Available from: https://go.drugbank.com/drugs/DB00853.
Babu NJ, Sanphui P, Nath NK, Khandavilli U, Nangia A. Temozolomide hydrochloride dihydrate. CrystEngComm (2013) 15:666–671.
Medscape. Temodar Temozolomide (2023). Available from: https://reference.medscape.com/drug/temodar-temozolomide-342229#5,
Drugs.com. Carmustine Injection Implant (2023). Available from: https://www.drugs.com/mtm/carmustine-injection-implant.html#side-effects,
Medscape. Carmustine (2023). Available from: https://reference.medscape.com/drug/bicnu-gliadel-carmustine-342194,
Drugbank. DB00762137 (2023). Available from: https://go.drugbank.com/drugs/DB00762137.
Drugbank. Irinotecan Reactions:1265 (2023). Available from: https://go.drugbank.com/reactions/1265.
PubChem. Glucuronide (2023). Available from: https://pubchem.ncbi.nlm.nih.gov/compound/SN38-glucuronide#section=2D-Structure,
Medscape. Irinotecan (2023). Available from: https://reference.medscape.com/drug/camptosar-irinotecan-342252,
Kazazi-Hyseni F, Beijnen JH, Schellens J. Bevacizumab. Oncologist (2010) 15(8):819–825.
Karaman S, Leppänen V-M, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development (2018) 145(14).
Lee SH, Jeong D, Han Y-S, Baek MJ. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Annals of Surgical Treatment and Research (2015) 89(1):1–8.
Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis (2017) 20(4):409–426.
Rodríguez PC, Zea AH, Ochoa AC. Mechanisms of tumor evasion from the immune response. Cancer Chemotherapy and Biological Response Modifiers (2003) 21:351–364.
Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis (2018) 7(1).
Brandes AA, Bartolotti M, Tosoni A, Poggi R, Franceschi E. Practical management of bevacizumab-related toxicities in glioblastoma 20 (2015). 166–175.
FDA Approved Drug Products: AVASTIN (bevacizumab) injection, for intravenous use. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125085s331lbl.pdf.
Wen PY, Weller M, Lee EQ, Alexander BM, Barnholtz-Sloan JS, Barthel FP. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-oncology (2020) 22(8):1073–1113.
Drugbank. DB06287. Available from: https://go.drugbank.com/drugs/DB06287.
Drugbank. DB12001. Available from: https://go.drugbank.com/drugs/DB12001#BE0002216,
Drugbank. DB12001. Available from: https://go.drugbank.com/drugs/DB12001,
Drugbank. DB01168. Available from: https://go.drugbank.com/drugs/DB01168.
Drugbank. DB00773. Available from: https://go.drugbank.com/drugs/DB00773.
Lombardi G, Salvo GL, Brandes AA, Eoli M, Rudà R, Faedi M. Regorafenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial. The Lancet Oncology (2019) 20(1):110–119.
Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel PS. Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nature Reviews (2020) 20(1):57–70.
Agnihotri S, Mansouri S, Burrell K, Li M, Mamatjan Y, Liu J. Ketoconazole and posaconazole selectively target HK2-expressing glioblastoma cells 25 (2019). 844–855.
Agnihotri S, Golbourn B, Huang X, Remke M, Younger S, Cairns RA. PINK1 is a negative regulator of growth and the Warburg effect in glioblastoma 76 (2016). 4708–4719.
Villa GR, Hulce JJ, Zanca C, Bi J, Ikegami S, Cahill GL. An LXR-cholesterol axis creates a metabolic co-dependency for brain cancers 30 (2016). 683–693.
Medscape. Bevacizumab (2023). Available from: https://reference.medscape.com/drug/avastin-mvasi-bevacizumab-342257,
Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nature Reviews. Clinical Oncology (2018) 15(7):422–442.
Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nature Reviews (2020) 20(1):12–25.
Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nature Immunology (2019) 20(9):1100–1109.
Lawler SE, Speranza M-C, Cho C-F, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncology (2017) 3(6):841–849.
Kaufmann JK, Chiocca EA. Glioma virus therapies between bench and bedside. Neuro-oncology (2014) 16(3):334–351.
Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in gene therapy for glioblastoma 5 (2013). 1271–1305.
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nature Reviews (2020) 20(1):26–41.
Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN. Is the blood-brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data 20 (2018). 184–191.
Heffron TP. Challenges of developing small-molecule kinase inhibitors for brain tumors and the need for emphasis on free drug levels. Neuro-oncology (2018) 20(3):307–312.
Vivanco I, Robins HI, Rohle D, Campos C, Grommes C, Nghiemphu PL. Differential sensitivity of glioma-versus lung cancer-specific EGFR mutations to EGFR kinase inhibitors 2 (2012). 458–471.
Wen PY, Cloughesy TF, Olivero AG, Morrissey KM, Wilson TR, Lu X. First-in-human phase I study to evaluate the brain-penetrant PI3K/mTOR inhibitor GDC-0084 in patients with progressive or recurrent high-grade glioma 26 (2020). 1820–1828.
Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD. Phase I study of GRN1005 in recurrent malignant glioma 19 (2013). 1567–1576.
Idbaih A, Canney M, Belin L, Desseaux C, Vignot A, Bouchoux G. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma 25 (2019). 3793–3801.
Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama, SR, Murray, B.A. Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma 164 (2016). 550–563.
Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE. Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell (2017) 20(2):233–246.
Mai WX, Gosa L, Daniels VW, Ta L, Tsang JE, Higgins B. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nature Medicine (2017) 23(11):1342–1351.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Kaan Küçükoğlu
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The authors keep the copyrights of the published materials with them, but the authors are aggee to give an exclusive license to the publisher that transfers all publishing and commercial exploitation rights to the publisher. The puslisher then shares the content published in this journal under CC BY-NC-ND license.